Calculus
2 The Derivative
2.1 The Derivative
The Derivative
y=f(x) 在某一點 (a, f(a))的切線(tangent line)斜率(slope)就是y在x=a相對於x的變化率(rate of change)
若推廣到x為任一值都適用時 ==> f的極限值存在
則定義函數f(x)的導數(Derivative)
Note in the above: for all values of x.
導數代表的意義:
- 幾何上的意義: 切線的斜率
- 物理上的意義: 瞬時的變化率
Using the Derivative to Describe the Motion of the Maglev
The position s of the maglev at any time t is:
s = f(t) = 4 t t
The derivative of the function f is: (推導過程要會, 下一節才會講速算法)f'(t) = 8 t位置的變化率 = 速度
磁浮列車的速度 :
v(t) = 8 t
Differentiation
找出函數的導數的過程被稱為differentiation
我們常說對某個函數微分, 就是要找出這個函數的導數.
表示微分的符號(notation):
Differentiation is always performed with respect to the independent variable.(微分總是對獨立的變數進行操作)
可以代替
y = f(x),
函數f在某個x=a時的導數值可表示為f'(a)或:
Finding the Derivative of a Function
練習Using the Graph of f to Sketch the Graph of f'
使用幾何的方法來描繪出導數: 劃出每一點的切線然後求得大概的斜率
Differentiability
若函數在某處(x=a)的導數存在 我們稱函數在該處(x=a)是可微分(differentiable)
通常, 函數不連續(discontinuity)的地方是不可微分的.
極限存在的地方才可微分
Differentiability and Continuity
Theoem:
If f is differentiable at a , then f is continuous at a .
Integration(積分)
微積分的另一個主要分支: 積分學( integral calculus )
4.1 Indefinite Integrals(不定積分)
Antiderivative(反導數)
A function F is an antiderivative of a function f on an interval I if
F'(x) = f(x)for all x in I .
若f(x)是F(x)的 導數, 則F(x)是f(x)的 反導數.
觀念:
導數及反導數都是一個x的函數, 不是一個值.
微分及積分都是指找出導數及反導數的過程(動作)
For ex.,
F(x) = 2*(x*x) + 1 F'(x) = 4*x f(x) = 4*x則
- 稱f(x)是F(x)的 導數 F'(x)在x=2的微分值是
F'(2) = f(2) = 4*2 = 8
= F(2) + 1 = 9
THEOREM 1
If F is an antiderivative of f on an interval I , then every antiderivative of f on I has the form
G(x) = F(x) + Cwhere C is a constant.
Because:
F'(x) = f(x) G'(x) = [ F(x) + C ] ' = F'(x)所以, 一個函數的反導數有多個可能
The Indefinite Integral(不定積分)
找出一個函數的所有反導數, 這個過程(動作)被稱為反微分(antidifferentiation) 或積分(integration).
積分的動作如下表示
被稱為函數f(x)對變數x的不定積分.(沒有指定變數x的範圍所以是不定的積分)
這個式子中:
- f(x)被稱為被積分(integrand.)
- C被稱為積分常數(constant of integration)
Basic Rules of Integration
微分方程式(Differential Equations)
有等號的式子, 被稱作方程式.
含有微分符號的方程式被稱作微分方程式
解微分方程式, 就是要找出被微分的函數, 這個過程就是積分.
積分得到微分的解(solution)是一般解(general solution). 因為有個未定的常數.
Initial Value Problems
某問題會給條件以求出這個未定的常數 此問題被稱為起始值問題(Initial Value Problems).
例如磁浮列車的問題:
- 磁浮列車的的速度是時間的函數
v(t) = 8t , 0 <= t <= 30
s(0) = 0
s'(t) = v(t) = 8*t s(t) = 4*t*t + C s(0) = 0所以, 解得的s(t) = 4*t*t
4.2 Integration by Substitution
要對一個複雜的函數做積分, 常會碰到沒有現成的公式可以直接使用的狀況. 此時就必須想些技巧, 以替換變數的方法, 達到使用公式的目的.5.2 Volumes: Disks, Washers, and Cross Sections
A solid of revolution(公轉得到的固體)
使平面中的區域圍繞該平面中的一條直線旋轉所得到的固體稱為"a solid of revolution". 被繞的直線稱為公轉軸(axis of revolution).The Disk Method(碟子計算法)
為了計算公轉得到的固體, 假設:- 一個函數產生的區域R可被分割成n不重疊的個子區域(R1, R2, ...Rn)
- 每一個子區域繞著x-軸公轉所得到的子固體(S1, S2,...Sn), 聯集的結果就是R公轉得到的固體S
可以使用以f(ck)為高, 以寬為Δx的矩形近似Rk的值,
ΔVk = [ π f(ck) f(ck) ] Δx這個矩形繞x-軸公轉所得到的碟形體為Dk, 所以, 我們可以使用所有碟形體的體積總和來近似S的體積.
Δx = ( b - a ) / n當Δx趨近於0(n趨近於無限大), 這就可以用積分來表示:
積分時, 要注意: 對函數和公轉軸間的距離積分:
函數 - 公轉軸
The Washer Method(墊圈計算法)
考慮R是一個在函數f(x)和g(x)間由x=a和x=b圍成的區域, 則R繞著x-軸形成的公轉體中間會有一個洞. 它的形狀就像一個墊圈, 外圍半徑是f(x), 內為半徑是g(x).把所有的薄墊圈體積累加起來就是整個墊圈的體積: 這相當於 :
外圍函數形成的公轉體 - 內圍函數形成的公轉體當發現題目要被公轉的區域可由2個函數圍住時使用此法 積分時, 要注意: 積分內的函數值一定要大於0:
外圍半徑 - 內圍半徑
The Method of Cross Sections(截面積方法)
截面積方法適用於無法單純地用函數圍起區域公轉而得到計算體積的情形6 The Transcendental Functions
A transcendental function cannot be expressed in terms of a finite sequence of the algebraic operations.6.1 The Natural Logarithmic Function(自然對數函數)
定義自然對數函數ln(x)The Graph of the Natural Logarithmic Function(自然對數函數的圖形)
f(x) = ln(x), 計算每個x所得到的y值 可描繪出y圖形:自然對數函數的微分
d ln(x) 1 -------- = --- dx x d ln(u) d ln(u) du 1 du -------- = --------- . ------ = --- . ---- dx du dx u dx
6.2 Inverse Functions(反函數)
如果f和g互為反函數, 則f( g(x) ) = x g( f(x) ) = x +-----+ +-----+ x ---> | f() | ---> | g() | ---> x <--- | | <--- | | <--- +-----+ +-----+
A function has an inverse if and only if it is one-to-one.
one-to-one: 一個值只會有一個結果Guidelines for Finding the Inverse of a Function
- Write y = f(x) .
- Solve this equation for x in terms of y (if possible).
- Interchange x and y to obtain y .
6.3 Exponential Functions
自然對數函數的反函數被稱為自然指數函數. 使用exp()來表示自然指數函數 則ln( exp(x) ) = x exp( ln(x) ) = xIt can be shown that the number e is irrational and has the following approximation: 2.718281828
留言